Search results for "Atomic vapor laser isotope separation"
showing 10 items of 11 documents
Laser spectroscopy measurement of isotope shifts and nuclear moments of short-lived neon isotopes
2003
Within the scope of a laser spectroscopy study of nuclear structure in the sd shell we are measuring nuclear moments and isotope shifts of neon isotopes. An ultra-sensitive variant of collinear laser spectroscopy [1, 2] is applied to a neutralized fast beam from ISOLDE (CERN). The non-optical detection is based on optical pumping, state selective collisional ionization and β-activity counting. This method gives access in particular to the short-lived isotopes in the extended chain of 17–26,28Ne.
Spatial separation of atomic states in a laser-cooled ion crystal
1998
A laser cooled ion crystal containing several hundred Ca+ ions has been stored in a linear Paul trap. Cooling is provided by a red detund laser at the 4S1/2−4P1/2 resonance transition. A second laser serves for repumping of those ions which decay from the excited 4P1/2 level to the metastable 3D3/2 state. The ions can be additionally excited by a third laser to a long lived metastable 3D5/2 energy level which decouples them from the cooling laser radiation. The light pressure acting upon the laser cooled ions pushes them into the direction of the laser beam. The ions in the metastable 3D5/2 state, however, do not experience any light pressure force and diffuse to the crystal side which poin…
Trace detection of plutonium by three-step photoionization with a laser system pumped by a copper vapor laser
1985
Laser photoionization has been used to detect trace amounts of plutonium. A high sensitivity and selectivity has been achieved by applying three-step excitation and ionization of the plutonium atoms with high pulse-repetition rates and additional mass determination by time-of-flight measurements. A laser system was developed which consists of a copper vapor laser pumping three dye lasers simultaneously. Samples containing between 1010 and 1012 atoms of239Pu on Re filaments were measured yielding strong resonance signals with maximum ion count rates of several kHz at a vanishingly low background. A detection efficiency of 10−7 was determined allowing the detection of about 108 plutonium atom…
Isomer separation of Cu and Cu with a resonance ionization laser ion source
2000
Abstract Radioactive copper isotopes were ionized with the resonance ionization laser ion source (RILIS) at the on-line isotope separator ISOLDE (CERN). Using the different hyperfine structure in the 3d10 4s 2 S1/2 – 3d10 4p 2 P01/2 transition the low- and high-spin isomers of 70 Cu were selectively enhanced by tuning the laser wavelength. The light was provided by a narrow-bandwidth dye laser pumped by copper vapor lasers (CVL) and frequency doubled in a BBO crystal. The ground state to isomeric state intensity ratio could be varied by a factor of 30, allowing to assign gamma transitions unambiguously to the decay of the individual isomers. It is shown that the method can also be used to…
Resonance Ionization Laser Ion Source - Off-line tests at TRIUMF
2004
Resonance ionization laser ion sources (RILIS) developed into the most powerful tool for radioactive ion beam production at on-line facilities, as they provide a selective ionization process with inherent suppression of unwanted isobaric contaminations at the ion source. While typical tunable laser systems for these applications are based on dye lasers, we developed an all solid state laser system which consists of three pulsed titanium:sapphire (ti:sa) lasers pumped by a single high repetition rate Nd:YAG laser. Each ti:sa laser provides up to 2.5 W average output power at 12 kHz repetition rate in the wavelength region of 700-950 nm with optional frequency doubling in BBO crystals. This l…
Hyperfine structure and isotope shifts of neutron-rich138?146Cs
1979
The 6s2S1/2-7p 2P3/2 transition in138–142Cs (λ=455.5 nm) has been investigated by high-resolution collinear laser spectroscopy in a fast atomic beam. The isotopes are obtained by on-line mass separation of fission products. Nuclear moments and changes of mean-square charge radii are derived from hyperfine structure and isotope shift.
A laser ion source for trace analysis
1988
A laser ion source has been set up which is based on resonant stepwise excitation and ionization of atomic vapor confined in an ionization chamber. Using a pulsed copper vapor/dye laser system with a high repetition rate (6.5 kHz) one expects high efficiency and high selectivity for this new type of ion source. First test experiments with lead are reported.
Isotope shifts and hyperfine structure in the transitions of stable calcium isotopes and calcium-41
1998
Isotope shifts and hyperfine structure in the 4s2 1S0 → 4s4p 1P1 and 4s2 1S0 → 4s4d 1D2 transitions of calcium have been measured with high-precision laser spectroscopy. Calcium atoms in an atomic beam were excited with single-frequency cw dye and titanium sapphire lasers and then photoionized with the 363.8 nm or 514.5 nm line of an argon ion laser. The resulting ions were analyzed and detected with a quadrupole mass spectrometer. Isotope shifts for all stable calcium isotopes and the radionuclide 41Ca have been measured in both transitions. The corresponding field shift and specific mass shift coefficients as well as hyperfine structure constants for the isotopes 41, 43Ca have been derive…
Determination of trace elements by resonant ionization mass spectrometry (RIMS)
1988
A resonant ionization mass spectrometer has been developed as an analytical tool for the detection of trace elements, especially of plutonium and other radionuclides. The sample, deposited on a rhenium filament, is evaporated by electrical heating and the atoms of the element under investigation are selectively ionized by laser light delivered from three dye lasers pumped by a copper vapour laser. The resulting photoions are detected in a time-of-flight spectrometer with a channelplate detector. For plutonium a mass resolution of M/δM=1500 was obtained and an overall detection efficiency of 4×10−6 was determined for stepwise excitation and ionization via autoionizing states. With a laser li…
Performance of a high repetition pulse rate laser system for in-gas-jet laser ionization studies with the Leuven laser ion source @ LISOL
2012
The Leuven Isotope Separator On-Line (LISOL) facility at the Cyclotron Research Center (CRC) Louvain-la-Neuve; The laser ionization efficiency of the Leuven gas cell-based laser ion source was investigated under on- and off-line conditions using two distinctly different laser setups: a low-repetition rate dye laser system and a high-repetition rate Ti:sapphire laser system. A systematic study of the ion signal dependence on repetition rate and laser pulse energy was performed in off-line tests using stable cobalt and copper isotopes. These studies also included in-gas-jet laser spectroscopy measurements on the hyperfine structure of 63Cu. A final run under on-line conditions in which the ra…